Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 132
1.
Clin Chim Acta ; 557: 117861, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38490341

BACKGROUND: Glutaric aciduria type-1 (GA-1) is a rare metabolic disorder due to glutaryl coenzyme A dehydrogenase deficiency, causing elevated levels of glutaryl-CoA and its derivatives. GA-1 exhibits symptoms like macrocephaly, developmental delays, and movement disorders. Timely diagnosis through genetic testing and newborn screening is crucial. However, in some cases, transiently elevated level of glutarylcarnitine (C5DC) challenges accurate diagnosis, highlighting the need for alternative diagnostic methods, like mass spectrometry-based untargeted metabolomics, to identify additional biomarkers for distinguishing falsely suspected GA-1 from healthy newborns. METHODOLOGY: DBS samples from falsely suspected GA-1 newborns (n = 47) and matched control were collected through the NBS program. Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was performed to enable biomarker and pathway investigations for significantly altered metabolites. RESULTS: 582 and 546 were up- and down-regulated metabolites in transient GA-1. 155 endogenous metabolites displayed significant variations compared to the control group. Furthermore, our data identified novel altered metabolic biomarkers, such as N-palmitoylcysteine, heptacarboxyporphyrin, 3-hydroxylinoleoylcarnitine, and monoacylglyceride (MG) (0:0/20:1/0:0), along with perturbed metabolic pathways like sphingolipid and thiamine metabolism associated with the transient elevated C5DC levels in DBS samples. CONCLUSIONS: A distinct metabolic pattern linked to the transient C5DC elevation in newborns was reported to enhance the prediction of the falsely positive cases, which could help avoiding unnecessary medical treatments and minimizing the financial burdens in the health sector.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase/deficiency , Humans , Infant, Newborn , Glutaryl-CoA Dehydrogenase/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , Biomarkers , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Metabolomics
2.
Gene Ther ; 31(1-2): 12-18, 2024 Jan.
Article En | MEDLINE | ID: mdl-37985879

Glutaric Aciduria type I (GA1) is a rare neurometabolic disorder caused by mutations in the GDCH gene encoding for glutaryl-CoA dehydrogenase (GCDH) in the catabolic pathway of lysine, hydroxylysine and tryptophan. GCDH deficiency leads to increased concentrations of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body fluids and tissues. These metabolites are the main triggers of brain damage. Mechanistic studies supporting neurotoxicity in mouse models have been conducted. However, the different vulnerability to some stressors between mouse and human brain cells reveals the need to have a reliable human neuronal model to study GA1 pathogenesis. In the present work we generated a GCDH knockout (KO) in the human neuroblastoma cell line SH-SY5Y by CRISPR/Cas9 technology. SH-SY5Y-GCDH KO cells accumulate GA, 3-OHGA, and glutarylcarnitine when exposed to lysine overload. GA or lysine treatment triggered neuronal damage in GCDH deficient cells. SH-SY5Y-GCDH KO cells also displayed features of GA1 pathogenesis such as increased oxidative stress vulnerability. Restoration of the GCDH activity by gene replacement rescued neuronal alterations. Thus, our findings provide a human neuronal cellular model of GA1 to study this disease and show the potential of gene therapy to rescue GCDH deficiency.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Lysine , Neuroblastoma , Humans , Animals , Mice , Lysine/genetics , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Mice, Knockout , Genetic Therapy
3.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37685964

Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase , Glutaryl-CoA Dehydrogenase/chemistry , Glutaryl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/enzymology , Brain Diseases, Metabolic/genetics , Protein Folding , Mutation, Missense , Protein Domains , Humans , Enzyme Stability , Solubility
4.
Orphanet J Rare Dis ; 18(1): 215, 2023 07 26.
Article En | MEDLINE | ID: mdl-37496092

BACKGROUND: Glutaric acidemia type 1 (GA1) is a rare autosomal recessive inherited metabolic disorder caused by variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). The estimated prevalence of GA1 and the mutational spectrum of the GCDH gene vary widely according to race and region. The aim of this study was to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 in Fujian Province, southeastern China. RESULTS: From January 2014 to December 2022, a total of 1,151,069 newborns (631,016 males and 520,053 females) were screened using MS/MS in six newborn screening (NBS) centers in Fujian Province and recruited for this study. Through NBS, 18 newborns (13 females and 5 males) were diagnosed with GA1. Thus, the estimated incidence of GA1 was 1 in 63,948 newborns in Fujian province. In addition, 17 patients with GA1 were recruited after clinical diagnosis. All but one patient with GA1 had a remarkable increase in glutarylcarnitine (C5DC) concentrations. The results of urinary organic acid analyses in 33 patients showed that the concentration of glutaric acid (GA) increased in all patients. The levels of C5DC and GA in patients identified via NBS were higher than those in patients identified via clinical diagnosis (P < 0.05). A total of 71 variants of 70 alleles were detected in patients with GA1, with 19 different pathogenic variants identified. The three most prevalent variants represented 73.23% of the total and were c.1244-2 A > C, p.(?) (63.38%), c.1261G > A, p.Ala421Thr (5.63%), and c.406G > T, p.Gly136Cys (4.22%). The most abundant genotype observed was c.[1244-2 A > C]; [1244-2 A > C] (18/35, 52.43%) and its phenotype corresponded to high excretors (HE, GA > 100 mmol/mol Cr). CONCLUSIONS: In conclusion, we investigated the biochemical and molecular features of 35 unrelated patients with GA1. C5DC concentrations in dried blood spots and urinary GA are effective indicators for a GA1 diagnosis. Our study also identified a GCDH variant spectrum in patients with GA1 from Fujian Province, southeastern China. Correlation analysis between genotypes and phenotypes provides preliminary and valuable information for genetic counseling and management.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Female , Humans , Male , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/genetics , China/epidemiology , East Asian People , Glutaryl-CoA Dehydrogenase/genetics , Tandem Mass Spectrometry/methods , Infant, Newborn
5.
J Inherit Metab Dis ; 46(3): 371-390, 2023 05.
Article En | MEDLINE | ID: mdl-37020324

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disease caused by pathogenic variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). We performed an extensive literature search to collect data on GA1 patients, together with unpublished cases, to provide an up-to-date genetic landscape of GCDH pathogenic variants and to investigate potential genotype-phenotype correlation, as this is still poorly understood. From this search, 421 different GCDH pathogenic variants have been identified, including four novel variants; c.179T>C (p.Leu60Pro), c.214C>T (p.Arg72Cys), c.309G>C (p.Leu103Phe), and c.665T>C (p.Phe222Ser).The variants are mostly distributed across the entire gene; although variant frequency in GA1 patients is relatively high in the regions encoding for active domains of GCDH. To investigate potential genotype-phenotype correlations, phenotypic descriptions of 532 patients have been combined and evaluated using novel combinatorial analyses. To do so, various clinical phenotypes were determined for each pathogenic variant by combining the information of all GA1 patients reported with this pathogenic variant, and subsequently mapped onto the 2D and 3D GCDH protein structure. In addition, the predicted pathogenicity of missense variants was analyzed using different in silico prediction score models. Both analyses showed an almost similar distribution of the highly pathogenic variants across the GCDH protein, although some hotspots, including the active domain, were observed. Moreover, it was demonstrated that highly pathogenic variants are significantly correlated with lower residual enzyme activity and the most accurate estimation was achieved by the REVEL score. A clear correlation of the genotype and the clinical phenotype however is still lacking.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Brain Diseases, Metabolic/metabolism , Mutation, Missense , Amino Acid Metabolism, Inborn Errors/metabolism
7.
Sci Transl Med ; 15(692): eadf4086, 2023 04 19.
Article En | MEDLINE | ID: mdl-37075130

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.


Glutaryl-CoA Dehydrogenase , Lysine , Animals , Mice , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Lysine/metabolism , Mice, Knockout , Liver/metabolism
8.
Mol Genet Genomics ; 298(3): 603-614, 2023 May.
Article En | MEDLINE | ID: mdl-36906724

Autosomal recessive glutaric acidaemia type I (GA-I) is a rare hereditary metabolic disease characterized by increased organic acids and neurologic symptoms. Although numerous variants in the GCDH gene have been identified to be connected with the pathogenesis of GA-I, the relationship between genotype and phenotype remains uncertain. In this study, we evaluated genetic data for two GA-I patients from Hubei, China, and we reviewed the previous research findings to clarify the genetic heterogeneity of GA-I and identify the potential causative variants. After we extracted genomic DNA from peripheral blood samples obtained from two unrelated Chinese families, we used target capture high-throughput sequencing combined with Sanger sequencing to determine likely pathogenic variants in the two probands. Electronic databases were also searched for the literature review. The genetic analysis revealed two compound heterozygous variants in the GCDH gene expected to lead to GA-I in the two probands (P1 and P2), with P1 carrying two known variants (c.892G > A/p. A298T and c.1244-2A > C/IVS10-2A > C) and P2 harbouring two novel variants (c.370G > T/p.G124W and c.473A > G/p.E158G). In the literature review, the most common alleles in low excretors (i.e., individuals with low excretion of GA) were R227P, V400M, M405V, and A298T, with variation in the severity of clinical phenotypes. Overall, we identified two novel GCDH gene candidate pathogenic variants in a Chinese patient, enriching the GCDH gene mutational spectrum and providing a solid foundation for the early diagnosis of GA-I patients with low excretion.


Amino Acid Metabolism, Inborn Errors , East Asian People , Humans , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Glutaryl-CoA Dehydrogenase/genetics , Mutation , High-Throughput Nucleotide Sequencing
9.
Nat Cell Biol ; 24(9): 1422-1432, 2022 09.
Article En | MEDLINE | ID: mdl-36050469

Tumour dependency on specific metabolic signals has been demonstrated and often guided numerous therapeutic approaches. We identify melanoma addiction to the mitochondrial protein glutaryl-CoA dehydrogenase (GCDH), which functions in lysine metabolism and controls protein glutarylation. GCDH knockdown induced cell death programmes in melanoma cells, an activity blocked by inhibition of the upstream lysine catabolism enzyme DHTKD1. The transcription factor NRF2 mediates GCDH-dependent melanoma cell death programmes. Mechanistically, GCDH knockdown induces NRF2 glutarylation, increasing its stability and DNA binding activity, with a concomitant transcriptional upregulation of ATF4, ATF3, DDIT3 and CHAC1, resulting in cell death. In vivo, inducible inactivation of GCDH effectively inhibited melanoma tumour growth. Correspondingly, reduced GCDH expression correlated with improved survival of patients with melanoma. These findings identify melanoma cell addiction to GCDH, limiting apoptotic signalling by controlling NRF2 glutarylation. Inhibiting the GCDH pathway could thus represent a therapeutic approach to treat melanoma.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Melanoma , NF-E2-Related Factor 2/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/metabolism , Brain Diseases, Metabolic/pathology , DNA , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Ketoglutarate Dehydrogenase Complex , Lysine , Melanoma/genetics , Mitochondrial Proteins , NF-E2-Related Factor 2/genetics
10.
Eur J Paediatr Neurol ; 39: 49-58, 2022 Jul.
Article En | MEDLINE | ID: mdl-35662016

AIM: To evaluate the pathogenic variants in GCDH gene and to assess the neurodevelopmental outcomes in children with Glutaric aciduria type 1 (GA-1). METHOD: Cross-sectional observational study between January 2019 and June 2020 in consecutive North Indian children with a clinical and biochemical suspicion of GA-1. Variants in the coding regions of GCDH gene were identified through Sanger sequencing. Neurodevelopmental and quality of life assessment was done using standardized scales. RESULTS: 24 children with GA-1 were identified. The median age at diagnosis was 12 months and the median delay in diagnosis was 3 months. Genetic analysis was done in 14 cases. It revealed 12 variants (11 missense and one nonsense) from 13 patients. Most of the pathogenic variants were in exon 9 and exon 5. Three novel variants were identified in three patients: two missense variants c.169G > A (p.Glu57Lys), c.1048T > C (p.Cys350Arg) and one nonsense variant c.331C > T (p.Lys111Ter). On neurodevelopmental assessment, majority of children with GA-1 were non ambulatory (62.5%), had limited hand skills (58.3%) and impaired communication (58.3%). Overall, poor global development was noted in 43.7%. A pre-existing developmental delay was significantly associated with impaired communication skills (p = 0.03), and the number of episodes of encephalopathy were significantly associated with impaired gross motor skill (p = 0.02). Presence of encephalopathy was significantly associated with poor performance in social emotional (p = 0.01) and cognitive (p = 0.03) domains of Developmental Profile-III scale and development of severe dystonia (p = 0.01). CONCLUSION: Our findings highlight the clinical, biochemical, radiological and genetic spectrum of GA-1 in children in North India and report the presence of novel pathogenic variations.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/enzymology , Brain Diseases, Metabolic/genetics , Child , Cross-Sectional Studies , Glutaryl-CoA Dehydrogenase/chemistry , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Quality of Life
12.
Clin Chim Acta ; 530: 113-118, 2022 May 01.
Article En | MEDLINE | ID: mdl-35367405

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable neurometabolic disorder caused by biallelic variants in the glutaryl-CoA dehydrogenase (GCDH) gene. There are few large-scale reports describing newborn screening (NBS) for GA1 in China. We report the NBS results, genotypes, and clinical features of patients diagnosed through NBS. METHODS: From January 2009 to August 2021, 4,202,587 newborns were screened by tandem mass spectrometry. Newborns with increased glutarylcarnitine (C5DC) concentrations were recalled for repeated test, and confirmatory examinations were performed if the second test was still positive. The pathogenicity of novel variants was predicted using computational programs. RESULTS: A total of 693 had increased C5DC concentrations, and 19 patients were diagnosed with GA1. Thus, the estimated incidence of GA1 in Zhejiang Province was 1 in 221,053 newborns. All the 19 patients had markedly increased C5DC concentrations and C5DC/octanoylcarnitine (C8) ratios; one had a slightly low free carnitine concentration. Seventeen (17/18, 94.4%) patients had increased GA concentrations, 15 were of high excretor phenotype and 3 were of low excretor phenotype. Twenty-three distinct GCDH variants were detected, of which 2were novel. Novel variants were predicted to be potentially pathogenic by computational programs. c.1244-2A > C was the most common variant, with an allelic frequency of 14.7%, followed by c.914C > T (p.S305L) (8.8%). The most common clinical symptom was movement disorder, followed by seizure, macrocephaly, and failure to thrive. Sylvian fissures widening was the most common MRI finding. CONCLUSIONS: Nineteen GA1 patients were diagnosed through the large-scale NBS in Zhejiang Province, with an estimated incidence of 1 in 221,053 newborns. The GCDH mutational spectrum is heterogenous, with the c.1244-2A > C variant being the most frequent variant in this population. NBS for GA1 should be promoted to achieve timely diagnosis and treatment.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , China , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant, Newborn , Neonatal Screening
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(1): 39-42, 2022 Jan 10.
Article Zh | MEDLINE | ID: mdl-34964964

OBJECTIVE: To explore the genetic basis for a neonate affected with Glutaric aciduria type I (GA-I). METHODS: Targeted capture and high-throughput sequencing was carried out for the proband and her parents. Candidate variants were verified by Sanger sequencing. RESULTS: The proband was found to harbor compound heterozygous variants of the GCDH gene, namely c.523G>A and c.1190T>C, which was derived from her father and mother, respectively. CONCLUSION: The compound heterozygous variants of the GCDH gene probably underlay the GA-I in the patient.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Child , Female , Glutaryl-CoA Dehydrogenase/genetics , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Mutation
14.
Article Zh | WPRIM | ID: wpr-928357

OBJECTIVE@#To explore the genetic basis for a neonate affected with Glutaric aciduria type I (GA-I).@*METHODS@#Targeted capture and high-throughput sequencing was carried out for the proband and her parents. Candidate variants were verified by Sanger sequencing.@*RESULTS@#The proband was found to harbor compound heterozygous variants of the GCDH gene, namely c.523G>A and c.1190T>C, which was derived from her father and mother, respectively.@*CONCLUSION@#The compound heterozygous variants of the GCDH gene probably underlay the GA-I in the patient.


Child , Female , Humans , Infant, Newborn , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Glutaryl-CoA Dehydrogenase/genetics , High-Throughput Nucleotide Sequencing , Mutation
15.
J Pediatr Endocrinol Metab ; 34(12): 1611-1614, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34517439

OBJECTIVES: The impact of coronavirus disease-19 (COVID-19) on metabolic outcome in patients with inborn errors of metabolism has rarely been discussed. Herein, we report a case with an acute encephalopathic crisis at the course of COVID-19 disease as the first sign of glutaric aciduria type 1 (GA-1). CASE PRESENTATION: A 9-month-old patient was admitted with encephalopathy and acute loss of acquired motor skills during the course of COVID-19 disease. She had lethargy, hypotonia, and choreoathetoid movements. In terms of COVID-19 encephalopathy, the reverse transcription-polymerase chain reaction assay test for COVID-19 was negative in cerebral spinal fluid. Brain imaging showed frontotemporal atrophy, bilateral subcortical and periventricular white matter, basal ganglia, and thalamic involvement. Elevated glutarylcarnitine in plasma and urinary excretion of glutaric and 3-OH-glutaric acids was noted. A homozygote mutation in the glutaryl-CoA dehydrogenase gene led to the diagnosis of GA-1. CONCLUSIONS: With this report, neurological damage associated with COVID-19 has been reported in GA-1 patients for the first time in literature.


Amino Acid Metabolism, Inborn Errors/complications , Brain Diseases, Metabolic/complications , Brain Diseases/etiology , COVID-19/complications , Glutaryl-CoA Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Amino Acid Metabolism, Inborn Errors/genetics , Brain/diagnostic imaging , Brain Diseases/complications , Brain Diseases/diagnostic imaging , Brain Diseases, Metabolic/diagnostic imaging , Brain Diseases, Metabolic/genetics , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19 Testing , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine , Female , Genetic Testing , Glutarates/blood , Glutarates/urine , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant , Magnetic Resonance Imaging , Motor Skills , Movement Disorders/etiology , Muscle Hypotonia/etiology
16.
Orphanet J Rare Dis ; 16(1): 339, 2021 08 03.
Article En | MEDLINE | ID: mdl-34344405

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable disorder affecting cerebral organic acid metabolism caused by a defective glutaryl-CoA dehydrogenase (GCDH) gene. GA1 diagnosis reports following newborn screening (NBS) are scarce in the Chinese population. This study aimed to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 identified through NBS. RESULTS: From January 2014 to September 2020, 517,484 newborns were screened by tandem mass spectrometry, 102 newborns with elevated glutarylcarnitine (C5DC) levels were called back. Thirteen patients were diagnosed with GA1, including 11 neonatal GA1 and two maternal GA1 patients. The incidence of GA1 in the Quanzhou region was estimated at 1 in 47,044 newborns. The initial NBS results showed that all but one of the patients had moderate to markedly increased C5DC levels. Notably, one neonatal patient with low free carnitine (C0) level suggest primary carnitine deficiency (PCD) but was ultimately diagnosed as GA1. Nine neonatal GA1 patients underwent urinary organic acid analyses: eight had elevated GA and 3HGA levels, and one was reported to be within the normal range. Ten distinct GCDH variants were identified. Eight were previously reported, and two were newly identified. In silico prediction tools and protein modeling analyses suggested that the newly identified variants were potentially pathogenic. The most common variant was c.1244-2 A>C, which had an allelic frequency of 54.55% (12/22), followed by c.1261G>A (p.Ala421Thr) at 9.09% (2/22). CONCLUSIONS: Neonatal GA1 patients with increased C5DC levels can be identified through NBS. Maternal GA1 patients can also be detected using NBS due to the low C0 levels in their infants. Few neonatal GA1 patients may have atypical acylcarnitine profiles that are easy to miss during NBS; therefore, multigene panel testing should be performed in newborns with low C0 levels. This study indicates that the GCDH variant spectra were heterogeneous in this southern Chinese cohort.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , China , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant , Infant, Newborn , Neonatal Screening
17.
Nephron ; 145(6): 770-775, 2021.
Article En | MEDLINE | ID: mdl-34247178

This is a case report of a girl with glutaric acidemia type I (GA-I) who experienced rhabdomyolysis and acute kidney injury (AKI). Her first acute metabolic crisis occurred at the age of 5 months, which mainly manifested as irritable crying, poor appetite, and hyperlactatemia. Mutation analysis showed 2 pathogenic mutations in the glutaryl-CoA dehydrogenase (GCDH) gene, which were c.383G>A (p.R128Q) and c.873delC (p.N291Kfs*41), the latter of which is a novel frameshift mutation of GA-I. She had a febrile illness at the age of 12 months, followed by AKI and severe rhabdomyolysis. Four days of continuous venovenous hemodiafiltration (CVVHDF) helped to overcome this acute decompensation. This case report describes a novel mutation in the GCDH gene, that is, c.873delC (p.N291Kfs*41). Also, it highlights the fact that patients with GA-I have a high risk of rhabdomyolysis and AKI, which may be induced by febrile diseases and hyperosmotic dehydration; CVVHDF can help to overcome this acute decompensation.


Acute Kidney Injury/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Frameshift Mutation , Glutaryl-CoA Dehydrogenase/deficiency , Rhabdomyolysis/genetics , Acute Kidney Injury/complications , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/complications , Brain Diseases, Metabolic/genetics , Female , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant , Rhabdomyolysis/complications
18.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Article En | MEDLINE | ID: mdl-34181873

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Amino Acid Metabolism, Inborn Errors/drug therapy , Brain Diseases, Metabolic/drug therapy , Carnitine/therapeutic use , Glutaryl-CoA Dehydrogenase/deficiency , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Brain Diseases, Metabolic/genetics , Carnitine/analogs & derivatives , Carnitine/metabolism , Cathepsin D/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/genetics , Grooming/drug effects , Inflammation/genetics , Interleukin-1beta/metabolism , Locomotion/drug effects , Lysine/pharmacology , Mice, Knockout , Open Field Test/drug effects , Transforming Growth Factor beta/metabolism
19.
Mol Genet Metab ; 133(2): 157-181, 2021 06.
Article En | MEDLINE | ID: mdl-33965309

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.


Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brain/metabolism , Gliosis/genetics , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Arginine/metabolism , Brain/pathology , Brain Diseases, Metabolic/metabolism , Brain Diseases, Metabolic/pathology , Creatine/blood , Disease Models, Animal , Gene Knock-In Techniques , Gliosis/metabolism , Gliosis/pathology , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Lysine/metabolism , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Rats
20.
Neuropediatrics ; 52(6): 431-440, 2021 12.
Article En | MEDLINE | ID: mdl-33622013

BACKGROUND: Glutaric acidemia type 1 (GA1) is an inherited neurometabolic disease with significant morbidity. However, neuro-radiological correlation is not completely understood. OBJECTIVE: The study aimed to characterize the neuroimaging findings and their association with neurological phenotype in GA1 children. METHODS: Twenty-six Egyptian children (median age = 12 months) diagnosed with GA1 underwent clinical evaluation and brain magnetic resonance imaging (MRI). We objectively assessed the severity of neurological phenotype at the time of MRI using movement disorder (MD) and morbidity scores. Evaluation of brain MRI abnormalities followed a systematic and region-specific scoring approach. Brain MRI findings and scores were correlated with MD and morbidity scores, disease onset, and presence of seizures. RESULTS: Fifteen (57.7%) cases had insidious onset, eight (30.8%) manifested acute onset, whereas three (11.5%) were asymptomatic. Ten (38.5%) cases had seizures, five of which had no acute encephalopathic crisis. Putamen and caudate abnormalities (found in all acute onset, 93.3 and 73.3% of insidious onset, and one of three asymptomatic cases) were significantly related to MD (p = 0.007 and 0.013) and morbidity (p = 0.005 and 0.003) scores. Globus pallidus abnormalities (50% of acute onset, 46.7% of insidious onset, and one of three of asymptomatic cases) were significantly associated with morbidity score (p = 0.023). Other MRI brain abnormalities as well as gray and white matter score showed no significant association with neurological phenotype. Younger age at onset, acute onset, and seizures were significantly associated with worse neurological manifestations. CONCLUSION: Patients with GA1 manifest characteristic and region-specific brain MRI abnormalities, but only striatal affection appears to correlate with neurological phenotype.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Brain Diseases, Metabolic/diagnostic imaging , Egypt , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Magnetic Resonance Imaging/methods
...